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ABSTRACT

Climate change is a major driver of biodiversity loss, changing the geographic
range and abundance of many species. However, there remain significant knowl-
edge gaps about the distribution of species, due principally to the amount of effort
and expertise required for traditional field monitoring. We propose an approach
leveraging computer vision to improve species distribution modelling, combining
the wide availability of remote sensing data with sparse on-ground citizen sci-
ence data.We introduce a novel task and dataset for mapping US bird species to
their habitats by predicting species encounter rates from satellite images, along
with baseline models which demonstrate the power of our approach. Our methods
open up possibilities for scalably modelling ecosystems properties worldwide.

1 INTRODUCTION

Climate change presents significant threats to global biodiversity, both directly and by compounding
the effects of other anthropogenic stressors, such as habitat loss, pollution, and introduced species.
Biodiversity loss in turn also impacts ecosystem services necessary to ensure food, water, and human
health and well-being (Marselle et al., 2021).

It is crucial to understand the changing distributions of species globally to inform policy decisions,
for example in shaping land use and land conservation choices. However, traditional methods for
species distribution models (SDMs) generally focus either on narrow sets of species or narrow ge-
ographical areas. This is in part due to the methods’ computational cost, the insufficient ability of
models to account for complex relationships between different variables, and the type of data used,
whose availability can be limited (Phillips et al., 2005; Newbold, 2010).

Machine learning algorithms for remote sensing have increasingly seen wide applicability across
sustainability-related domains (see e.g. Rolf et al. (2021)) and have been suggested as a promis-
ing tool for SDMs (Beery et al., 2021). Moreover, the surge of data collection on citizen science
platforms along with improved data quality validation processes in recent years offers tremendous
opportunity for scientific research, as species observation records from these sources can cover a
larger temporal and geographic extent at a finer resolution and at lower cost than traditional sam-
pling methods. Indeed, citizen science data and remotely sensed ecosystem attributes such as vegeta-
tion indices have been shown to improve the performance of models, especially for less widespread
species (Arenas-Castro et al., 2022). Recently, the GeoLifeCLEF challenge (Lorieul et al., 2022)
was introduced with the goal of directly predicting plant and animal abundance from aerial images
at 1m resolution, using deep computer vision. However, the GeoLifeCLEF benchmark has proven
extremely challenging, potentially since only one species is associated with each location.

We propose to use remote sensing to infer the joint distribution of many species for a given location,
using publicly available citizen science observation records as ground truth. Our approach leverages
the fact that a species’ presence or absence at a location depends on the ecosystem present there,
and therefore the abundances of different species are highly correlated. Specifically, we predict the
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encounter rates of 684 bird species at sites across the continental USA. We focus on birds due to
the availability of high-quality bird observations and the ecological importance of birds, which play
a vital role in almost every terrestrial ecosystem and are threatened significantly by climate change
(Rodenhouse et al., 2008; Stephens et al., 2016). Our contributions include: (i) framing the task of
predicting bird species encounter rates at a specific location using remote sensing data, (ii) building
a dataset for this task, obtained from publicly available bird observation and satellite data sources,
and (iii) showing the efficacy of baseline deep computer vision methods for this task.

Problem definition. We consider presence-absence bird sighting records from the citizen science
database eBird (Kelling et al., 2013). Each location (termed a hotspot) in the eBird database is as-
sociated to a number of complete checklists containing all species a birdwatcher was able to observe
at a specific date and time. If h is a hotspot, and s1, . . . , sn the species of interest, then our goal
is to build a machine learning model that takes as input a satellite image of h (and optionally other
data) and predicts the vector yh = (yhs1 , ..., y

h
sn), where yhs is the number of complete checklists

reporting species s at h divided by the total number of complete checklists at h. This ratio yhs can
be understood as an encounter rate, the probability for a visitor to observe a species if they visit the
hotspot. We aim at jointly predicting this quantity for all bird species in the region. Thus, our task
can be considered as a supervised multi-output regression problem. We consider encounter rates
as our target variable because they are a widely used measure in species distribution modeling, and
are indeed used extensively on the eBird platform (in the form of “hotspot bar charts”) in order to
summarize the species in a given location for birdwatchers and ornithologists.

2 DATASET

We introduce a dataset for the task defined in 1 with the continental USA as our region of interest.
Bird distributions vary seasonally; we consider specifically the month of June, representing the
breeding period for most birds in the region, and making it possible to neglect migratory effects.
Our dataset will be released publicly upon acceptance.

Species observation data. We extracted all eBird complete checklists recorded in June from 2000 to
2021 in the continental USA. We filtered out hotspots with fewer than 5 complete checklists recorded
in June to ensure more meaningful encounter rates, resulting in 8439 hotspots. We included all
regularly occurring species in the region, as denoted by ABA Codes 1 and 2 (ABA, 2022), omitting
species found only in Hawaii and Alaska, as well as one Code-2 seabird species with rare oceanic
observations, leaving a total of 684 species. We then computed the encounter rates for each hotspot
and corrected for vagrants (species seen in hotspots outside of their geographical range) by using
range maps from eBird to set the target encounter rates to zero in these hotspots. We aggregate the
species observations in June over twenty years, only considering seasonal change in distributions.
We leave annual temporal change for future iterations of this work.

Remote Sensing Imagery. For each hotspot, we extracted RGB and NIR bands (reflectance mea-
surements) from Sentinel-2 satellite tiles covering the entirety of a square of about 5 km2 centered
around the hotspots. The images have a resolution of 10 m for the considered bands. We extracted
images in June with cloud coverage of at most 10 %, keeping the least cloudy and most recent im-
age of those in the period 2016-2020 if it covered the entire 5 km2 region or composing a mosaic
with the extracted images otherwise, in order to minimize seams in the images of our dataset. We
associate one image per hotspot for years from 2016-2020,, considering that a more recent satellite
image would be more representative of our species data, since there are more checklists in recent
years compared to earlier years.

Environmental data. We extracted 19 bioclimatic and 8 pedologic variables as rasters from World-
Clim 1.4 and SoilGrids in the same fashion as the GeoLifeCLEF 2020 dataset (Cole et al., 2020)
for each hotspot. Additionally, we extracted land cover data patches from the ESRI Land Use Land
Cover 10m-resolution maps derived from Sentinel-2 (Esri, 2020).

Train-test split In order to account for spatial auto-correlation and overfitting that can arise from
random splits of geospatial data (Roberts et al., 2017), we first clustered hotspots such that the
minimum distance between clusters is 5 km and randomly assigned them to train, validation and
test splits in a 70%, 20%, 10% proportion.
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3 METHODOLOGY

In this section, we detail baselines for this task as well as directions for further improvement.

3.1 ENVIRONMENTAL BASELINE

A first naive baseline is the mean encounter rates over the training set for each species. Following
the GeoLifeCLEF challenge, we also propose an environmental baseline, using Gradient Boosted
Regression Trees on the bioclimatic and pedological variables extracted at each of the hotspots.

3.2 CNN BASELINE

We propose a first CNN model with ResNet-18 (He et al., 2016) architecture. We initialize the
network with ImageNet pretrained weights. Since ImageNet has only RGB bands, the initialization
of the first layer for the NIR band is performed by sampling from a normal distribution parameterized
by the mean and standard deviation of the layer’s weights for the other bands.

We consider a region of interest of 640 m2, center-cropping the satellite patches to size 64 × 64
around the hotspot and normalizing the bands with our training set statistics. We use random
vertical and horizontal flipping for data augmentation and train the model with cross entropy
LCE = 1

Nh

∑
h Lh = 1

Nh

∑
h

∑
s(species)−ysh log(ŷsh) − (1 − ysh) log(1 − ŷsh) where Nh is the

number of hotspots h, y the predictions of the model and ŷ the ground truth encounter rates.

We add the bioclimatic and pedological data by normalizing it variable-wise with training set statis-
tics, aligning it to the satellite images’ resolution and stacking the corresponding patches to the
images. We add the landcover data following the same procedure.

3.3 INCLUDING GEOGRAPHICAL INFORMATION

We explore different methods for making the model spatially explicit to account for the geographical
ranges of some species. For example, Eastern and Western wood pewees have the same habitat
but are not found in the same geographical regions, and thus do not co-occur. A model blind to
geographical information might predict both species in the same place, which is undesirable when
producing maps for conservation planning, and could also impede training.

Location encoder (LE). We train a location encoder taking as input latitude and longitude infor-
mation jointly with the image encoder. We use the same architecture as the location encoder of
Mac Aodha et al. (2019) (cf. A.2), removing the final classification layer, and instead concatenating
the obtained features to those obtained from the ResNet image encoder, before passing them to a
fully-connected layer to obtain the predicted encounter rates.

Hard-masking with range maps (RM). Some species have known geographical range. In this
approach, we use range maps available via eBird which are updated regularly as binary masks on
the predictions to zero out the encounter rates of species in regions where they cannot be found. If
the range map is not available for a species, the predictions are left untouched.

Soft-masking (SM). Here, we compute proxies for range maps from the training set data, since
range maps (a) are available only for certain species and (b) do not capture finer gradations of
abundance across regions. We define a regional “correction” factor cR, which reflects the relative
prevalence of species in region R compared to the prevalence in the whole geographical area W . In
our case, R varies across US states, while W is the continental US. For each species s, we set:

cRs =

∑
l∈CR

1s∈l

|CR|
/

∑
l∈CW

1s∈l

|CW |
(1)

where CR and CW are the set of observations in R and W resp., and s ∈ l denotes that s has been
reported in l. For a hotspot h in R, the final prediction is clip [0,1](cR.yh). See A.3 for derivation.

3.4 INCLUDING HOTSPOT METADATA

Additionally, we consider a weighted loss (WL) with weights as a function of the number of check-
lists nh at each hotspot, and give more importance to more visited hotspots since the data at such

3



Tackling Climate Change with Machine Learning workshop at ICLR2023

hotspots is likely more reliable by virtue of more checklists. The contribution of each hotspot to the
loss is f(nh)Lh. For f , we consider the identity, log and square root functions.

3.5 EVALUATION

Beyond optimization for common regression metrics (MSE, MAE), it is desirable for the predicted
most likely species in a given hotspot to coincide with those that have most frequently been observed.
We therefore report top-10 and top-30 accuracies, representing for k = 10 and k = 30 the number
of species present in both the top k predicted species and the top k observed species, divided by k.
However, the number of species observed varies considerably across hotspots (cf. A.1), unlike in
e.g. the GeoLifeCLEF challenge for which there is only one ground truth species for each hotspot.
We therefore also define an adaptive top-k accuracy as the top-k value where k is the total number
of species observed at that hotspot. We also analyse the predictions of the model by looking at
precision and recall per species across hotspots and provide further details in A.6.

4 EXPERIMENTS

Figure 1: Test set hotspots colored by adaptive
top-k performance for the RGBNIR + Env + range
maps masking model.

Numerical results on the test set for the models pre-
sented in Section 3 are provided in Table 1 and val-
idation performance is reported in A.4. All mod-
els were trained with batch size 64, Adam optimizer,
initial learning rate 0.0003, with a scheduler that de-
creases the rate based on validation loss.

While the CNN baseline with RGB and NIR bands
does not outperform the environmental baseline on
all metrics, combining satellite and environmental
data outperforms the latter, particularly on the top-
k metric. This highlights the importance of remote
sensing data for our task. Adding landcover data did
not improve the model, likely due to the coarseness
of the 10 classes, so it was not used for further ex-
periments. While adding geographical information
through RM masking improves the performance of the model, the LE and the SM methods did
not, perhaps because of the simplicity of the architecture of the former and the coarse region unit
(US states) considered for the latter. We plan to explore other location encoding methods, such as
space2vec (Mai et al., 2020) and consider smaller units for the soft-masking. Fig. 1 shows the ge-
ographical distribution of performance on the test set of the hard-masking with RM model and we
provide further examples of predictions in A.5. Species-wise precision and recall are reported in
A.6. We find that range-restricted species, along with very common species, are the best performing
species according to recall. Interestingly, the weighted loss yields performance similar to that of
regular cross-entropy loss. The best performance was achieved with the log function. This suggests
that checklists from less frequented hotspots (e.g. with fewer than 5 complete checklists) could be
included in future iterations without compromising performance.

Table 1: Results for the proposed models on the test set. “Env” indicates the use of environmental variables. All
MSE and MAE scores are reported ×103 and ×102 respectively. “Top-k” denotes the adaptive top-k accuracy.

Method MSE [10−3] MAE [10−2] Top-k Top-30 Top-10
Mean encounter rate 7.18 2.91 51.46 43.91 26.45
Env baseline 4.83±0.00 2.05± 0.00 68.86± 0.01 62.3± 0.03 43.11± 0.06
RGBNIR 5.39±0.00 1.98± 0.00 67.0±0.02 60.1±0.17 41.83±0.30
RGBNIR + Env 4.57±0.02 1.78± 0.01 72.91±0.19 67.0±0.00 48.0±0.00
RGBNIR + Env + LE 4.49± 0.05 1.73± 0.01 72.01± 0.08 65.00±0.00 44.50±0.70
RGBNIR + Env + RM 4.45± 0.05 1.75± 0.01 73.38± 0.08 67.68±0.11 48.15±0.20
RGBNIR + Env + SM 13.3±0.39 2.74±0.08 65.0±1.39 54.7±2.3 31.7±1.04
RGBNIR + Env + RM + WL 4.76±0.00 1.60± 0.00 72.45±0.02 65.90± 0.02 46.30± 0.006
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5 CONCLUSION

We introduce a new dataset built from publicly available data to leverage the combination of satellite
imagery and presence-absence citizen science data for joint species distribution modelling. We are
currently extending our approach and dataset to other taxonomic groups and regions. In East Africa,
for example, sparse data poses additional challenges but also underscores the importance of scalable
remote sensing approaches to supplement scarce on-the-ground data. We hope to integrate our al-
gorithm into eBird’s existing tool that lists the “likely species” in a given area. This tool currently
relies on past checklists and is therefore only available in well-monitored locations. By approximat-
ing species distributions at poorly monitored locations using remote sensing to evaluate changing
land use patterns and habitat, we anticipate significantly expanding the ability of ornithologists to
rapidly estimate biodiversity across the world.
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garita Triguero-Mas, Katrin Böhning-Gaese, Matthias Braubach, Penny A Cook, et al. Pathways
linking biodiversity to human health: A conceptual framework. Environment International, 150:
106420, 2021.

Tim Newbold. Applications and limitations of museum data for conservation and ecology, with
particular attention to species distribution models. Progress in physical geography, 34(1):3–22,
2010.

5

https://livingatlas.arcgis.com/landcover/


Tackling Climate Change with Machine Learning workshop at ICLR2023

Steven J Phillips et al. A brief tutorial on Maxent. AT&T Research, 190(4):231–259, 2005.

David R Roberts, Volker Bahn, Simone Ciuti, Mark S Boyce, Jane Elith, Gurutzeta Guillera-Arroita,
Severin Hauenstein, José J Lahoz-Monfort, Boris Schröder, Wilfried Thuiller, et al. Cross-
validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecog-
raphy, 40(8):913–929, 2017.

Nicholas L Rodenhouse, SN Matthews, KP McFarland, JD Lambert, LR Iverson, A Prasad, T Scott
Sillett, and Richard T Holmes. Potential effects of climate change on birds of the Northeast.
Mitigation and adaptation strategies for global change, 13:517–540, 2008.

Esther Rolf, Jonathan Proctor, Tamma Carleton, Ian Bolliger, Vaishaal Shankar, Miyabi Ishihara,
Benjamin Recht, and Solomon Hsiang. A generalizable and accessible approach to machine
learning with global satellite imagery. Nature communications, 12(1):1–11, 2021.

Philip A Stephens, Lucy R Mason, Rhys E Green, Richard D Gregory, John R Sauer, Jamie Ali-
son, Ainars Aunins, Lluı́s Brotons, Stuart HM Butchart, Tommaso Campedelli, et al. Consistent
response of bird populations to climate change on two continents. Science, 352(6281):84–87,
2016.

A APPENDIX

A.1 TRAINING SET DISTRIBUTION

A characteristic of the presence-absence data considered for this task is the zero-inflated nature of the
targets. Indeed, while 684 species are considered, hotspots in our training set have 57 species with
non-zero encounter rate on average. Fig. 2 shows the distribution of number of species encountered.

Figure 2: Distribution of the number of species encountered in training set hotspots.

A.2 LOCATION ENCODER

We include latitude-longitude information through a separate encoder as shown in Fig. 3. We follow
the implementation for Mac Aodha et al. (2019) for the location encoder. We first map each spatial
coordinate xl (latitude and longitude) to [cos(πxl), sin(πxl)]. We end up with a input vector of
size 4, which is passed through an initial fully connected layer, followed by 4 residual blocks, each
consisting of two fully connected layers with a dropout layer in between.

A.3 DERIVATION OF THE SOFT MASKING FACTOR

In this section we explain further our choice of the soft masking factor which draws inspiration from
the work of Mac Aodha et al. (2019). The underlying assumption is that while satellite images are

6
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Figure 3: Schematic view of the model including location information through a separate encoder.

informative about habitat, location also encodes geography, and both are important for designing a
spatially-explicit model in our setting. To encode location here, we take y as the target, x as the input
image and l as the location in a region R. Predictions conditioned on both x and l can be expressed
using Bayes rule:

p (y|x, l) = p (y|x) ∗ p (x) ∗ p (l|y, x)
p (x, l)

(2)

Under the assumption that l and x are independent and also independent w.r.t y, we can approximate
the formula as follows, where p (y|x) is the output of the CNN and cR is the correction factor. In
fact, we account for geography at the level of region R, meaning that predictions in all location
within R will be corrected with the same correction factor.

p (y|x, l) = p (y|x) ∗ p (l|y)
p (l)

(3)

cR =
p (l|y)
p (l)

(4)

which is interpreted as the proportion of checklists inR reporting y over the proportion of checklists
anywhere reporting y. This can be expressed in terms of counts for each species s as :

cRs =

∑
l∈CR

1s∈l

|CR|
/

∑
l∈CW

1s∈l

|CW |
(5)

Note that although this factor is easy to calculate from the training data, and allow scalability to
sparse data regimes, this factor can results in predictions values greater than 1, we propose to handle
this by clipping the values to 1. However, we would like to think in the future about better options.
Moreover, the assumption of the independence of l and x is very strong, because satellite images
are inherently tied to the location they correspond to. We suspect this may be a reason for the
degradation in performance in table 1 when using this factor. We aim to explore more about cases
when this assumption doesn’t hold.

A.4 VALIDATION RESULTS

We provide results on the validation set of the proposed baseline models in Table 2.

Table 2: Results for the proposed models on the validation set. The ranking of models is the same as on the
test set. MSE and MAE are reported ×103 and ×102 respectively.

Method MSE [10−3] MAE[10−2] Top-k Top-30 Top-10
Mean ER 7.393 2.944 50.75 43.91 26.45
Env baseline 4.93± 0.0 2.08± 0.0 68.60± 0.00 61.64± 0.01 42.41± 0.01
RGBNIR 5.5±0.05 1.99± 0.00 66.9±0.30 59.7±0.30 41.83±0.20
RGBNIR + Env 4.56±0.02 1.7±0.0 73.0±0.00 66.0±0.00 48.0±0.00
RGBNIR + Env + LE 4.9±0.04 1.7±0.01 72.5±0.00 64.5±0.70 44.0±0.00
RGBNIR + Env + RM 4.6±0.02 1.8±0.00 73.3±0.00 66.6±0.50 48.2±0.30
RGBNIR + Env + SM 13.6±0.45 2.78±0.11 64.5±1.56 54.2±1.75 31.0±1.41
RGBNIR + Env + RM + WL 4.76±0.00 1.77±0.00 72.4± 0.01 65.4±0.02 46.01± 0.02
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A.5 TOP 10 SPECIES PREDICTIONS AT DIFFERENT HOTSPOTS

All predictions reported at those obtained with the RGBNIR + Env + RM + WL model. We sampled
hotspots from our test set and evaluated the model’s performance in predicting the top 10 bird species
at each location. We selected hotspots from geographically distinct regions, featuring different land
cover types, including the Pacific Coast (California), Northeast (Maine) and Central US (Ohio). The
following figures illustrate the results from these regions.

Figure 4: Hotspot and species at San Clemente Island, California: Our model predicts the presence of various
species in this region, including the house finch and loggerhead shrike, which are consistent with the ground
truth and highly reported on eBird.

Figure 5: Hotspot and species at Salton Sea, California: Our models predict the presence of various species
in this region, including the western kingbird, verdin, and Eurasian collared dove. These species are consistent
with the ground truth and are highly reported on eBird for this location.

A.6 ANALYZING PREDICTIONS

In addition to adaptive Top-k, Top-10 and Top-30 accuracy, which evaluate the model globally across
species, we consider precision and recall per species to identify which are the species for which our
models perform the best or worse. Our targets are continuous but to compute the precision and
recall, we treat them in the same way as for as our accuracy metrics. In Table 4, we report the top
50 species according to recall metric for the RGBNIR + Env + RM model. These are the species
whose presence the model does not fail to predict. We also list some species which have 0 recall in
Table 3 but note that all species which have low recall are seen in very few hotspots.

8
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Figure 6: Hotspot and species at Rachel Carson National Wildlife Refuge, Maine: Our models correctly
identified the song sparrow and the yellow warbler in this region, which exist in the top-10 species in both the
ground truth and predicted list. However, it is worth noting that shoreline species are absent from the predicted
top-10 list, representing a failure of our model. This may be a consequence of the partial cloud cover in the
satellite image.

Figure 7: At Valentine Farm Conservation Center in Maine, our models correctly identified the song sparrow,
common yellowthroat, yellow warbler, and American goldfinch. These species exist in both the ground truth
and are consistent with Maine’s ecology.

Figure 8: At West Park Cemetery in Ohio, our models accurately identified the American robin, northern
cardinal, gray catbird, and six of the top ten species in this hotspot. This is consistent with the species reported
on eBird.

9
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Species Recall Occurrences
Long-eared Owl 0.0 4.0
Pacific Golden-Plover 0.0 1.0
American Golden-Plover 0.0 2.0
Snow Bunting 0.0 1.0
Tufted Puffin 0.0 1.0
Greater Scaup 0.0 9.0
Black-footed Albatross 0.0 1.0
Red Phalarope 0.0 1.0
Northern Fulmar 0.0 2.0
Harris’s Sparrow 0.0 1.0

Table 3: Example species with 0 recall on the test set,which means the model misses them but we also note
that they are encountered in very few hotspots.
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Species Recall Precision Occurrences
Varied Bunting 1.000 1.000 4
Botteri’s Sparrow 1.000 1.000 5
Olive Sparrow 1.000 1.000 4
Pink-footed Shearwater 1.000 1.000 1
Sprague’s Pipit 1.000 1.000 1
Cassia Crossbill 1.000 1.000 1
Red-faced Warbler 1.000 0.875 7
Black-crested Titmouse 1.000 0.857 6
Yellow-eyed Junco 1.000 0.833 5
Abert’s Towhee 1.000 0.813 13
Bicknell’s Thrush 1.000 0.800 4
Rufous-winged Sparrow 1.000 0.800 4
Great Kiskadee 1.000 0.800 4
Blue-throated Mountain-gem 1.000 0.800 4
Gambel’s Quail 1.000 0.741 20
Verdin 1.000 0.714 25
Reddish Egret 1.000 0.700 7
Arizona Woodpecker 1.000 0.667 4
Mexican Chickadee 1.000 0.667 2
Bridled Titmouse 1.000 0.636 7
Gray Hawk 1.000 0.571 4
Olive Warbler 1.000 0.500 3
Baird’s Sparrow 1.000 0.500 1
Mexican Duck 1.000 0.500 2
Mountain Plover 1.000 0.500 1
Buff-breasted Flycatcher 1.000 0.500 2
Snail Kite 1.000 0.500 1
Scaled Quail 1.000 0.500 5
Wilson’s Plover 1.000 0.444 4
Nanday Parakeet 1.000 0.429 3
California Gnatcatcher 1.000 0.400 2
Whiskered Screech-Owl 1.000 0.400 2
Green Kingfisher 1.000 0.333 1
Golden-cheeked Warbler 1.000 0.333 1
Gray-crowned Rosy-Finch 1.000 0.333 1
Thick-billed Longspur 1.000 0.250 1
Kirtland’s Warbler 1.000 0.250 1
Brown-capped Rosy-Finch 1.000 0.250 1
Red-cockaded Woodpecker 1.000 0.200 1
Northern Cardinal 0.985 0.889 480
Mourning Dove 0.982 0.897 720
Common Grackle 0.978 0.882 504
Western Gull 0.978 0.786 45
Black-billed Magpie 0.972 0.812 71
American Robin 0.969 0.914 678
Ladder-backed Woodpecker 0.968 0.682 31
American Crow 0.966 0.871 651
Carolina Chickadee 0.966 0.778 174
Blue Jay 0.961 0.897 490
Carolina Wren 0.956 0.801 294

Table 4: Top 50 species with highest recall on the test set, recall and precision per species scores and number
of test set hotspots in which species have non-zero encounter rates, for predictions of the RGBNIR + Env +
RM model. Note that only species which were encountered in the test set are considered (566/684). Rows are
sorted by recall performance.
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