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Abstract

Small farms contribute to a large share of the productive
land in developing countries. In regions such as sub-Saharan
Africa, where 80% of farms are small (under 2 ha in size), the
task of mapping smallholder cropland is an important part
of tracking sustainability measures such as crop productiv-
ity. However, the visually diverse and nuanced appearance of
small farms has limited the effectiveness of traditional ap-
proaches to cropland mapping. Here we introduce a new ap-
proach based on the detection of harvest piles characteris-
tic of many smallholder systems throughout the world. We
present HarvestNet, a dataset for mapping the presence of
farms in the Ethiopian regions of Tigray and Amhara dur-
ing 2020-2023, collected using expert knowledge and satel-
lite images, totaling 7k hand-labeled images and 2k ground-
collected labels. We also benchmark a set of baselines includ-
ing SOTA models in remote sensing with our best models
having around 80% classification performance on hand la-
belled data and 90%, 98% accuracy on ground truth data for
Tigray, Amhara respectively. We also perform a visual com-
parison with a widely used pre-existing coverage map and
show that our model detects an extra 56,621 hectares of crop-
land in Tigray. We conclude that remote sensing of harvest
piles can contribute to more timely and accurate cropland as-
sessments in food insecure regions.

Introduction

Smallholder farming is the most common form of agricul-
ture worldwide, supporting the livelihoods of billions of
people and producing more than half of food calories (Sam-
berg et al. 2016; Lowder, Skoet, and Raney 2016). Cost ef-
fective and accurate mapping of farming activity can thus
aid in monitoring food security, assessing impacts of natu-
ral and human-induced hazards, and informing agriculture
extension and development policies. Yet smallholder farms
are often sparse and fragmented which makes producing ad-
equate and timely land use maps challenging, especially in
resource constrained regions. Consequently, many land use
datasets (Zanaga et al. 2022; Brown et al. 2022; Buchhorn
et al. 2020) are inaccurate and updated infrequently in such
regions, if at all.

Machine learning algorithms for remote sensing have
proved to be successful in many sustainability-related mea-
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Figure 1: Various examples of harvest piles

sures such as poverty mapping, vegetation and crop map-
ping as well as health and education measures (Yeh et al.
2021). Moreover, satellite images are now widely available
at different resolutions with global coverage at low to no cost
(Planet Labs 2023). The performance of methods for map-
ping croplands in smallholder systems, however, remains
limited in many cases (Zanaga et al. 2022; Brown et al.
2022).

Existing approaches to mapping croplands typically rely
on either the unique temporal pattern of vegetation growth
and senescence in crop fields compared to surrounding
vegetation, the identification of field boundaries in high-
resolution imagery, or some combination of both (Estes et al.
2022; Rufin et al. 2022). In non-mechanized smallholder
systems like Ethiopia, where subsistence rain-fed agriculture
predominates (Asmamaw 2017), these techniques face limi-
tations. Weeds and wild vegetation often exhibit growth and
spectral reflectance patterns resembling cultivated crops,
causing confusion in spectral-based classification. The land-
scape’s heterogeneity in smallholder systems, encompass-
ing various land uses such as crops, fallow land, and natu-
ral vegetation, also poses challenges in accurately demarcat-
ing field boundaries and distinguishing different land cover
types.

We highlight another feature that is common in small-
holder systems throughout the world — the presence of har-
vest piles on or near fields that cultivate grains at the end of a
harvest season. Crops, particularly grains, are manually cut
and gathered into piles of 3-10m before threshing, a process
of separating the grain from the straw. Figure 2 shows what
a harvest pile can look like on a natural image scale. The
harvest pile footprints are present until after threshing and
finally disappear when the land is prepared for the upcoming
season. Since the piles are valuable, they are not abandoned
in fields. Unlike houses, roads, and field boundaries, harvest



piles are a more dynamic indicator that signifies seasonal
farming.

We focus our work on Ethiopia, which boasts the third
largest agricultural sector in Africa based on its GDP
(Statista 2021). Specifically, our attention is directed to-
wards the lowlands in the Tigray and Amhara regions.
This focus is driven by two main factors: Firstly, the area
has historically been incorrectly mapped in previous works
(Zanaga et al. 2022). Secondly, this area covers arid to sub-
humid tropical agroclimatic zones within Ethiopia, where
we have available ground data. The major crops grown in
these regions include teff, barley, wheat, maize, sorghum,
finger millet, and sesame (ESS 2023; Sirany and Tadele
2022).

Figure 2: Photos of harvest piles. Left: person for scale.

Harvest pile detection is a novel task, thus we needed to
hand label our dataset to train models. To gather labels for
the presence of a pile in each image, we undertook a rigor-
ous process of hand-labelling SkySat satellite images. In this
process, experts - who are researchers originally from the
region and have significant field and research experience in
agricultural extension work in the region - guided the identi-
fication of key areas in Tigray and Amhara. Satellite images
were obtained within these areas and then AWS Mturk iden-
tified the obvious negatives while experts labelled the pos-
itives. Figure 1 is a collection of various examples of piles
in satellite images. In Figure 3, we show remote sensing ex-
amples of harvest piles at various stages of harvest. We then
used this labelled data to train some SOTA models in remote
sensing such as CNNs and transformers and achieved 80%
accuracy on the best model. Moreover, we generated a map
depicting projected farming activities in Tigray and Amhara
regions, and compared it with the most current cover map.

Our contributions are as follows:

* We propose a framework to detect farming activity
through the presence of harvest piles.

¢ We introduce HarvestNet, a dataset of around 7k satellite
images labeled by a set of experts collected for Tigray
and Ambhara regions of Ethiopia around the harvest sea-
son of 2020-2023.

* We document a multi-tiered data labelling pipeline to
achieve the optimal balance of scale, quality, and con-
sistency.

* We benchmarked SOTA models on HarvestNet and
tested them against ground truth data and hand-labeled
data to show their efficacay for the task.

* We produced a map for the predicted farming activity by
running inference on the unlabelled data, and compared
it against ESA WorldCover (Zanaga et al. 2022), the most
updated land usage cover map.

1. Harvesting

2. Piling

3. Threshing

Figure 3: Various stages of harvest activity

Related Work

Mapping croplands using remote sensing has been well re-
searched in the past (Kussul et al. 2017; Jiang et al. 2020;
Friedl et al. 2002; Zanaga et al. 2022; Buchhorn et al. 2020;
Brown et al. 2022; Kerner et al. 2020). Some methods use
feature engineering with nonlinear classifiers (Zanaga et al.
2022; Jiang et al. 2020; Brown et al. 2022), others use deep
learning methods (Kerner et al. 2020; Kussul et al. 2017). In
all these works, the Normalized Difference Vegetation In-
dex (NDVI) as well as multispectral satellite bands are used
as an input, NDVI is a numerical indicator used to quantify
the presence and vigor of live green vegetation by measuring
the difference between the reflectance of near-infrared (NIR)
and visible (red) light wavelengths in imagery. ESA (Zanaga
et al. 2022) and Dynamic World (Brown et al. 2022) com-
bine both NDVI and multispectral bands to provide global
coverage of more than 10 classes of land use, which include
crop coverage. These maps are the largest in scale and have
a pixel resolution of 10m. Other methods (Mananze, Pdcas,
and Cunha 2020; Hackman, Gong, and Wang 2017; Kerner
et al. 2020; Acharki 2022) introduced a higher resolution but
on a smaller scale in countries such as Mozambique, Ghana,
Togo and Morocco.

Active learning is a method of building efficient training
sets by iteratively improving the model performance through
sampling. Some studies (Estes et al. 2022; Rufin et al. 2022)
have employed active learning to map smallholder farms.
This approach helps mitigate bias in cropland mapping, as
it can more accurately detect larger fields compared to other
methods. However, none of these works have explored the
concept of utilizing harvest piles as indicators when map-
ping smallholder farms.

Method

In many smallholder farms for crops such as grains, farmers
collect the harvest into piles during the harvest season, in
preparation for threshing. These piles can be heaps of vari-
ous crop types gathered around the nearest threshing ground.
Therefore, the detection of piles during the harvest season is
a very compelling indicator of farming activity. We suggest
employing RGB satellite imagery for pile detection, as these



color bands are widely accessible and can be easily and eco-
nomically adjusted for other purposes beyond pile detection.

Task formulation

To provide a proof of concept of this novel method, we de-
fined the task of farmland detection as a binary classifica-
tion task where the input is a square RGB satellite image
at a predefined scale. If [ is a location represented by lati-
tude and longitude, the task is to build a machine learning
model that takes a satellite image z; and predicts y; where
y; is a binary output indicating the presence of farming ac-
tivity at location [. The output should be positive if the im-
age contains at least one indication of harvest activity. In our
area of interest, which covers Tigray and Amhara regions in
Ethiopia, the harvest process constists of three stages: cut-
ting down and grouping crops to be collected (harvesting;
Figure 3 left), piling the crops to be processed (piling; Figure
3 middle), and processing the piles to separate grains from
the straw (threshing; Figure 3 right). Each stage results in
different footprints of harvest patches. We classify the pres-
ence of any of these stages as a positive example of harvest
activity and we use binary cross entropy loss defined by

1
Lep = N Z —y - log (1) — (1 —wi) log (1 — i) (D)
l

where NNV is the number of locations [, y; the predictions and
1 the ground truth presence of harvest piles. More examples
of harvest piles are displayed in Appendix Figure A3 and
A2.

HarvestNet Dataset

Here we introduce HarvestNet, the first dataset to our knowl-
edge created for the task of detecting harvest activity from
pile detection. Ethiopia is the second most populated coun-
try in the continent, with a majority of its people primar-
ily dependent on smallholder rain-fed agriculture. In our re-
gions of interest, the piling of harvests occurs during Meher,
the main harvest season between September and February.
These piles can be observed as early as October and stay on
the land as late as May of the next year. We therefore restrict
the time samples of our dataset to Oct-May months. A geo-
graphical scale of around 250 m was found to be a good fit
for our purposes since piles are typically located within 1km
from the field plot. Our images thus cover square land areas
of dimensions 256x256 m.

Satellite images We use images from 2 different resolu-
tions (0.5m per pixel and 4.77m per pixel). This is due to
the small size of the harvest piles in an image, which makes
hand labeling, as well as more accurate mapping only possi-
ble on a higher-resolution image, as shown in Figure 4.

On the other hand, higher-res images are limited in cov-
erage and availability. Thus, we also include around 9k (7k
labeled images + 2k ground truth images) lower-res images
as part of our dataset. We use the high-res images (150k un-
labelled, 7k labeled images) for training and testing on the
hand-labeled test set as well as for creating the crop map,
while we use the low-res images for the ground truth testing

Figure 4: Side by side comparison of two areas, captured in
4.77m (left), 0.5m (center) and 0.3m (right) resolution. Note
that piles become indistinguishable at 4.77m resolution.

since the higher res is not available in the ground truth loca-
tions. In our dataset, each example consists of a unique lati-
tude, longitude, altitude, and date. All examples correspond
to a SkySat image, and all labelled examples correspond to
both a SkySat and a PlanetScope image.

SkySat images (planet labs 2023) are 512x512 pixel sub-
sets of orthorectified composites of SkySat Collect captures
at a 0.50 meter per pixel resolution. SkySat images are nor-
malized to account for different latitudes and times of ac-
quisition, and then sharpened and color corrected for the
best visual performance. For our analysis, we downloaded
every SkySat Collect with less than 10 percent cloud cover
between October 2022 and January 2023. In total, we have
157k SkySat images, of which 7k are labeled.

PlanetScope images (Planet Labs 2023) are subsets of
monthly PlanetScope Visual Basemaps with a resolution
of 4.77 meters per pixel. These base maps are created us-
ing Planet Lab’s proprietary “best scene on top” algorithm
to select the highest quality imagery from Planet’s catalog
over specified time intervals, based on cloud cover and im-
age sharpness. The images include red, green, blue, and al-
pha bands. The alpha mask indicates pixels where there is
no data available. We used subsets that correspond to the
exact location and month of each of the 7k hand-labelled
SkySat images. To maintain the same coverage of 256x256
m at the lower resolution, we used the bounding box of each
SkySat image to download PlanetScope images at a size
of roughly 56x56 pixels. Since the PlanetScope images are
readily available and have good coverage in geography and
time series, we separately downloaded 4 PlanetScope im-
ages for each area of interest corresponding to the 2k ground
truth images collected by the survey team. They include a
capture for each month in the Oct-Jan harvest season. This
window guarantees that farming activity will be captured in
at least one of the 4 images.

Labelling Since this is a novel task, we hand-labeled our
entire training and test set. We wanted to create a high-
quality, high-coverage dataset despite having limited re-



sources and sparse access to field data and subject experts
familiar with remote sensing on harvest piles. Thus, we de-
veloped a multi-staged committee approach to label succes-
sively more focused data sets. With the guidance of experts
in the agricultural zones of our region of interest, we drew
polygons around different areas distributed around Tigray
and Amhara, making sure that these areas had at least a 2:1
negative to positive class ratio. We then filtered out obvi-
ous negatives such as mountains, and shrubs using crowd-
sourced labelling powered by Amazon Mechanical Turk.
When there is a disagreement between the MTurk labellers,
we made the decision of whether there is potential farming
activity in the image. The potential positive examples were
then given to experts, who hand-labeled whether the image
contained actual harvest activity. In Appendix Figure A4 we
outline our labelling process in greater detail. The labelling
process was done through inspection on SkySat images ex-
clusively, afterwards PlanetScope images were paired with
the corresponding labelled SkySat images. By the end of
this stage, we had roughly 7k labelled examples, which each
consisted of a SkySat image of size 512x512 pixels and a
PlanetScope image of size 56x56 pixels covering the same
area at the same month.

Early stage harvest Early stage harvest Pile footproints

Figure 5: Examples of harvest pile activity that are not
strictly piles.

Dirt piles, huts, Aluminum sheds Turned land

wells 3

Figure 6: Examples of edge cases that are not harvest piles.

During the labeling process, we encountered diverse edge
cases. Some image features resulted from the harvest piling
process but did not match the conventional stage of harvest
activity shown in Figure 1. Notable examples, depicted in
Figure 5, include early-stage light and dark crop bunches
and residual pile footprints. These were labeled as positive
instances. Additionally, some images depicted small dots re-
sembling harvest piles, which were later identified, through
consultation with our experts, as various entities such as dirt
piles, aluminum sheds, and altered land shown in Figure 6.
These were deemed unrelated to harvest activity and marked
as negative instances.

Ground Truth In March 2023, we sent a survey team to
gather ground truth data in specified locations in Tigray and
Ambhara, in order to validate the prediction of our models for
the 2022-2023 harvest season. 1,017 and 1,279 labels were
gathered in Tigray and Ambhara regions respectively. Ground
truth data were gathered for all harvest crop types, including
maize, teff, wheat, and finger millet. All the heaps belong
to the pile point category and are situated within a maxi-
mum distance of 500 meters from the field plot. A map of
ground truth collection zones is plotted in Appendix Figure
AS. Due to the ongoing armed conflict, the team was unable
to visit areas in Tigray that were covered by SkySat (higher-
res imagery) in our image dataset. In response, we opted to
combine the ground truth data with PlanetScope images, a
more diverse collection that spans the geographic area with
an extensive temporal range.

Dataset split As the goal is to build a dataset that is well-
balanced, we aimed for a roughly equal split of positive and
negative labels. We were able to collect SkySat images from
various regions shown in Figure 7, that are representative
of the diversity of the geography. The exact distribution of
the dataset geography and labels is described in Appendix
Figure Al.
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Figure 7: Train-Test split

Since the image captures are distributed spatially, it is de-
sirable to avoid image overlap between the training and test
sets while ensuring a roughly similar distribution between
sets. Thus, we used a graph traversal approach by creating
vertices for each image’s coordinates, and edges connecting
images that overlap. We first identified the connected com-
ponents of the shape graphs as shown in Figure 8 A (the
code is provided in Appendix Listing Al). Afterwards, the
partitions were distributed evenly between the train and test
set as shown in Figure 8 B. This was carried out by moving
the two largest partition groups to the train set, and then it-
eratively moving the remaining groups to either the train or
test set to maintain an 80:20 ratio between the train and test
sets. This results in a train/test split that strictly do not over-



lap geographically, while still sharing a similar geographic
distribution.
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Figure 8: (A): A region of image captures, organized into
non-overlapping partitions of overlapping shapes. All par-
titions are assigned a random color. (B): The partitions are
then divided into train (red) and test (blue) that do not over-
lap with each other.

Benchmarking

We trained various machine learning models on our dataset
to predict the presence of harvest activity in an image, as
described below.

MOSAIKS (Rolf et al. 2021) This approach employs a
non-deep learning technique to extract features from a satel-
lite image. It achieves this by convolving a series of ran-
domly chosen patches with the input image. Subsequently,
these extracted features are used in various downstream
tasks. The method offers good perform well in these tasks at
a low cost. We featurized our dataset to contain 512 features
per image, and then use an XGBoost classifier to predict our
target from these features.

SATMAE (Cong et al. 2022) is a pretraining framework
based on masked autoencoders (MAE). It is pretrained on
the FMOW dataset (0.3 m resolution imagery) for sin-
gle image and temporal tasks, and pretrained on images
from Sentinel 2 (10 m) for multispectral tasks. The model
demonstrated good performance on different downstream
and transfer learning tasks. We employ transfer learning by
training the model - pretrained on FMOW dataset - on our
specific dataset to predict the presence of harvest piles.

Swin Autoencoder (Liu et al. 2022) is a type of vision
transformer that builds hierarchical feature maps by merging
image patches in deeper layers and has linear computation
complexity to input image size by computing self-attention
only within each local window. We pretrain a masked image
autoencoder built on Swin Transformer V2, using our 150k
Skysat images. The input image is scaled to 224x224 pixels,
and divided into a grid of patches of size 28x28. We use a
mask ratio of 40%. Then we attach a fully connected layer to
the transformer’s pooled output of dimension 1 x 768. The
model is then fine tuned on our training set of labelled Skysat
images.

Satlas (Bastani et al. 2022) is a pre-trained model based
on the Swin transformer, and pretrained on 1.3 million re-
mote sensing images collected from different sources. The

model performs well for in-distribution and out of distribu-
tion tasks, suggesting the benefit of pretraining on a large
dataset. We used the weights pretrained on higher res im-
ages, froze the model, and trained a fully connected layer on
top of the pre-trained model.

ResNet-50 (He et al. 2016) Convolutional Neural Net-
works (CNNs) have proven to perform well in several re-
mote sensing tasks. Here, we used ResNet-50, one of the
most popular and efficient networks, to predict our target.
Since our input satellite image is in RGB, we used the Ima-
geNet initialization of the network and trained a supervised
binary classification task using our labelled dataset.

Experiments
Experimental details

As our working dimensions are areas of size 256x256 m,
we center cropped the SkySat images to 512x512 pixels and
PlanetScope images to 56x56 pixels before normalizing to
zero mean and unit standard deviation. These images were
then scaled to fit the default input dimensions of the models.
MOSAIKS was trained with 512 features. The deep mod-
els were trained using the Adam optimizer to minimize the
binary cross-entropy loss criterion. The hyperparameters on
batch size, learning rate, scheduler, and training step count
are described in Appendix Table Al. We experimented with
combinations of hyperparameters and settled on the best per-
forming combinations. For transformers-based models we
chose the batch size that would maximise use of the 24GB
of VRAM in our graphics cards. The models were trained
until they converged, and the step counts were recorded.

Evaluation

As the task of harvest pile detection depends on the nuances
of real farm activity, it is always desirable to have both a
qualitative test as well as a quantitative one. We describe
both evaluations below.

Qualitative evaluation We compare the coverage of our
predictions against ESA (Zanaga et al. 2022). ESA is a land
use map, providing global coverage for 2020 and 2021 at
10 m resolution, developed and validated based on Sentinel-
1 and Sentinel-2 data. It has been independently validated
with a global overall accuracy of about 75%. Despite being
SOTA in mapping land cover and land use, our experts iden-
tified many errors in smallholder systems as highlighted in
Figure 9a. The pink overlay describe ESA’s classification of
land as cropland. In the squares outlined in the 9a, ESA fails
to detect much of the farmland that is actually there. We map
these locations using our best performing model and present
a visual comparison of the two maps. We also provide visual
confirmation of farm activity by visually referencing the in-
put satellite images in two of these locations.

Quantitative evaluation In this evaluation, we calculate
the classification performance of our trained models using
accuracy, AUROC, precision and recall. We also use the
same metrics to measure the performance of our models
against ground truth data.
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Figure 9: (a) The ESA map for our study region. (b) Positive
predictions from our ResNet-50 model, overlaid the ESA
map. Sampled locations are shown in squares, (c) and (d)
show satellite images of the locations pinpointed in (b)

Results
Model Accuracy | AUROC | Precision | Recall | F1-Score
Satlas 67.17 62.47 80.0 30.61 44.28
SatMAE 60.0 56.35 57.37 29.73 39.17
MOSAIKS 55.46 51.81 47.65 23.59 31.56
Swin Autoencoder 80.87 80.15 79.88 74.79 77.23
ResNet-50 79.18 77.85 81.4 67.61 73.87

Table 1: Results for the proposed models on the hand la-
belled test set

Model Region Accuracy | F1-Score | Precision | Recall
ResNet-50 | Ambhara 98.68 99.33 1 98.68
ResNet-50 Tigray 90.76 95.16 1 90.76

Table 2: Results for the ResNet model evaluated on the test
ground truth data

Figure 10: Reconstruction results from the Swin v2 masked
autoencoder trained on 150k unlabelled Skysat imagery

Total -, + +,+ -y
Number of samples 150577 11563 24076 38989
Area covered (ha) 986,821 56,621 62,082 137,059

Table 3: Results for the comparison between the positives
and negatives predicted by the ResNet model and ESA. “-
.+~ are areas where ESA predicts negative while our model
predicts positive (newly detected cropland), “+,+” and “-,-”
are areas where our model and ESA agree

Table 1 displays our benchmark outcomes obtained from
the HarvestNet dataset, utilizing the hand-labeled data as the
test set. In Table 2, we show the results of the ResNet model
on the ground truth data. We use the ResNet model here be-
cause it is one of the best models we have and also the best
performing model in terms of precision.

Figure 10 demonstrates the reconstruction results of a
self-supervised Swin masked autoencoder pretrained on the
150k SkySat dataset. We can see that although the model
was not trained on the input image, it generalizes well on fill-
ing in the masked area for Ethiopian landscapes. The model
was trained on an 80% split of the images, and evaluated on
the remaining 20% split.

In Figure 9, a comparison is presented between the ESA
map (Figure 9a) and our predicted map (Figure 9b). We
emphasize particular regions outlined in black rectangles,
wherein our experts have pinpointed inaccurately classified
regions by ESA. A closer comparison of these regions of
interest can be viewed in Appendix Figure A6. Satellite im-
ages for two sampled locations (Figure 9c and 9d) reveal
specific examples where ESA fails to detect cropland accu-
rately. Table 3 tabulates the variations in positive and neg-
ative predictions between our map coverage and the ESA
map. The objective is to illustrate the number of samples we
predict as positive or negative compared to ESA, along with
instances where we predict positively while ESA predicts
negatively. Additionally, we present the additional cropland
area detected by our model (in hectares) and the overlapping
cropland region shared between the two models.

Discussion

Model performance The outcomes presented in Table 1
highlight a notable trend: deep models consistently outper-
form non-deep models that rely on feature generators such as
MOSAIKS. This disparity in performance can be attributed
to the nature of our task, which involves identifying piles —
intricate and compact elements within an image. The intri-



cate nature of piles demands the capabilities of a deep net-
work to adequately capture and detect these distinctive fea-
tures.

The second notable finding is that ResNet-50 performs
quite well, even outperforming SatMAE. We believe that
this is mainly due to the fact that CNN’s better maintain pixel
structure and generate feature maps that retain spatial infor-
mation, which is a critical aspect for accurately detecting
piles. Following this trend, the Swin autoencoder slightly
outperforms ResNet, thanks to its incorporation of low-level
details in its hierarchical feature maps. Even though Satlas
is based on the Swin architecture, it performs worse than the
Swin autoencoder pretrained on our unlabelled images. This
suggests that although it was pretrained on a very compre-
hensive dataset, it is not uniquely positioned to perform in
specific areas of interest.

Lastly, it is worth noting that our models’ precision are
notably higher than their recall, indicating a relatively high
dataset quality. However, to enhance performance, further
inclusion of positive samples is required, presenting a po-
tential avenue for future research.

Evaluation and coverage In Table 2, we observe notably
promising outcomes for ResNet predictions on ground truth
data. This relatively elevated performance, when compared
to the results from hand-labeled test data, can be attributed
to two main factors. Firstly, during ground truth testing, we
employed four distinct images for each location, each rep-
resenting a different month within the harvest season. By
taking the union of the predictions from each image, we ef-
fectively enhance the prediction quality. This approach was
feasible with the ground truth test set due to the utiliza-
tion of PlanetScope imagery, which offers greater availabil-
ity compared to SkySat but at a lower resolution. Secondly,
the ground truth data exclusively comprises positive sam-
ples, meaning there are no inherent false positives by default.
This inherent nature of the ground truth dataset significantly
contributes to the elevated accuracy observed in our results.

In Table 3 and Figure 9, we aim to show that our method
can improve upon ESA predictions. We show in Figure 9
that there are sampled locations (in rectangles) that ESA
predicts as non-crop lands while our model predicts as crop-
land shown in figure 9b. Moreover, Figure 9c and 9d show 2
samples of satellite images corresponding to 2 of these loca-
tions. In table 3, we also show that there are around 11k ex-
amples (corresponding to 57k ha) where our model predicts
farming activity and ESA does not, and around 62k samples
(199k ha) where our model predicts the same as ESA. This
added cropland is roughly estimated by experts to be 90%
true cropland. This demonstrates the potential for using har-
vest pile features to improve existing maps in smallholder
regions. In Appendix Figure A6 we show a higher zoom map
for these missed locations.

Limitations and future work Due to resource limitations
and the nature of small feature classification, our dataset has
some limitations. We created binary labels on fixed 256x256
m areas, which resulted in a relatively low spatial resolution
of the dataset. While this resolution was chosen to strike a
practical balance in terms of land coverage, it is worth noting

that one could break down the existing images into smaller
subdivisions and conduct binary classification on subsec-
tions of positively labelled images. An important advantage
of this approach is that all subdivisions derived from nega-
tively labeled images in the HarvestNet dataset can serve as
negative labels for training.

This dataset is also made for a binary classification task
rather than object detection or semantic segmentation of har-
vest piles. The object detection approach could be helpful by
giving information about the location, size, and density of
piles. As a large part of the initial challenge was to identify
areas that contain any piles at all, this next step can be ap-
plied to our existing positively labelled images. It may be
a fruitful endeavor to explore using zero-shot image seg-
mentation models such as Segment Anything (Kirillov et al.
2023) to automate the process.

As in Figure 3, Figure 5 and Appendix Figure A3, we
see that there are various image features that correspond to
harvest pile activity. Whether they are crops gathered for
harvest, piles of harvest, threshing products, or footprints
left by piles, they have all been classified as positive ex-
amples of harvest activity. When access to expert feedback
becomes more readily available, it would be better to also
classify each feature as a specific type of harvest activity.
This improvement would complement the object detection
direction, especially with images that have multiple types of
harvest activity.

Another possible next step is to incorporate time series
data to the detection of harvest piles. With this project, we
faced manpower limitations to effectively hand-label a very
large dataset, so we focused more on geographical diversity
with our images. The performance of PlanetScope imagery
to detect true positives suggests there are greater improve-
ments to be made by training and inferencing on multiple
time-series captures of the same area.

The performance of models trained on HarvestNet also
suggests that similar approaches to targeting small but im-
portant image features can yield benefits in other agricul-
tural settings, such as hay bale detection in North America.
A dataset of harvest piles may offer opportunities for trans-
fer learning to these other domains.

Conclusion

In this work, we present HarvestNet, the first dataset for
detecting farming activity using remote sensing and har-
vest piles. HarvestNet includes a dataset for both Tigray and
Ambhara regions in Ethiopia, totaling 7k labelled SkySat im-
ages, and 9k labelled PlanetScope images corresponding to
2k ground truth points and the 7k labelled Skysat images.
We document the process of building the dataset, present
different benchmarks results on some of the SOTA remote
sensing models, and conduct land coverage analysis by com-
paring our predictions to ESA, a SOTA land use map. We
show in our comparison that we greatly improve the cur-
rent ESA map by incorporating our method of pile detec-
tion. Thus, by combining our approach with existing cover-
age maps like ESA, we can have a direct impact on efforts
to map active smallholder farming, consequently helping to
better monitor food security, assess the impacts of natural



and human-induced disasters, and inform agricultural exten-
sion and development policies. Link to the labels and bench-
mark code will be available in the supplementary material.
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Appendix
Image collection

All SkySat images were downloaded using the Planet Python SDK. This process includes account authentication, creating
a session to call Planet servers, creating an order request, and downloading the order when it’s ready. For our analysis we
downloaded SkySat Collects, which are approximately 50-70 SkySat Scenes and 20 x 5.9 square kilometers in size. Collects
were subsetted differently based on their use case. Images used for inference were produced by subsetting entire Collects into
512 x 512 pixel sized areas. Images that were partially empty were thrown away. Unlike PlanetScope, SkySat has very limited
spatial and temporal availability, limiting our choices to specific regions of Tigray and Amhara. We addressed this issue while
maintaining our quota by diversely sampling areas in Tigray and Amhara. All of our images were originally stored in different
folders in Google Drive based on region and time, but were later merged into one folder while still maintaining temporal and
spatial information.

Accessing the dataset

The dataset is made partially accessible through this link https://figshare.com/s/45a7b45556b90a9al1d2. The labels and
PlanetScope images will be shared, but unfortunately we cannot release the SkySat images due to Planet Labs’ licens-
ing requirements which would render the labels useless. Additionally, the benchmark code can be found on GitHub: https:
/lanonymous.4open.science/r/harvest-piles-9D64.

We provide the dataset in a .zip folder structured as follows:

Dataset
|- planetscope_images/
|- lables_all.csv
|- train.csv
|- test.csv

Computational resources

We trained our models on a single NVIDIA GeForce RTX 2080 Ti GPU with a fixed seed. MOSAIKS was trained with 3
different seeds and the average of these seeds was reported. The Swin masked autoencoder was pretrained on the task of
reconstructing masked patches, and the model converged in 23 hours. The pretrained models were fine tuned for at most 5
hours.

Training parameters

In Appendix Table A1, we outline the different hyperparameters of the deep models we used. Our models were all trained for
200 epochs, and the epoch count where they converged is recorded in the table. All other unlisted parameters were set to their
defaults.

Table Al: Hyperparameters of models trained on HarvestNet

Model Batch size Scheduler Learning rate | Training steps | Convergence epochs
Satlas 50 Warmup cosine 3e-4 6000 55
SatMAE 64 Warmup cosine 3e-4 2500 29
Swin Autoencoder 50 Linear le-3 4500 40
ResNet-50 32 One cycle le-3 2600 15

Split counts

In Appendix Table A2, we provide counts for each train test split in both Tigray and Amhara, we also show counts of positives
and negative examples in each split.

Table A2: Split counts for the train and test set, based on region and label

Tigray | Amhara | Positives | Negatives | Total
Train | 4737 795 2547 2985 5532
Test 1171 212 608 781 1383




Ablation studies

In this section we explore the impact of various hyperparameters on the performance of models trained on HarvestNet.

Table A3: ResNet-50 Ablations

Pretrain Optimizer | Accuracy | AUROC | Precision | Recall | F1-Score
None Adam 65.05 69.31 60.00 60.41 59.34
IMAGENET1K_V2 Adam 79.18 87.23 79.04 71.75 74.19
IMAGENETI1K_V2 | MADGRAD 79.85 88.45 80.34 72.65 75.65

ResNet-50 was trained using fp16 mixed precision, using the one_cycle_Ir learning rate scheduler with a learning rate of

0.001.

Table A4: Satlas ablations

Variation Accuracy | AUROC | Precision | Recall | F1-Score
Modify pretrained output layer 64.78 60.08 82.76 24.00 37.21
Append new output layer 67.17 62.47 80.0 30.61 44.28

We first modified the default Satlas model by modifying its final projection layer output dimension from 1000 to 1, and append-
ing a sigmoid layer on top.

We then modified the default Satlas model by appending an FC layer with input dimension 1000 and output dimension 1 to the
model, and appending a sigmoid layer on top. This performed better, which we believe is due to the fact that appending a layer
maintains of the the latents learned in the pretrained weights.

Table A5: Swin ablations

Freeze pretrained | Accuracy | AUROC | Precision | Recall | F1-Score
Yes 70.10 68.57 68.28 57.43 62.37
No 80.87 80.15 79.88 74.79 77.23

Dataset distribution

In Appendix Figure Al, we show distributions of latitude, longitude and altitude on train, test sets as well as on the entire
labelled set and unlabelled set. One notable feature of the dataset is that for each bucket in the histogram, there is a roughly
equal number of positive and negative labels. Moreover, the ratio of train to test is also around 80:20 in all buckets. Most of our
labelled altitude was between 500-1000m, this is because we were targeting lowlands, since previous work (Zanaga et al. 2022)
had errors in lowlands in particular.

Examples of harvest piles
In Appendix Figure A2 and Appendix Figure A3 we provide more examples of harvest activity.

Ground truth collection

During February and March 2023, we sent teams of six individuals to Tigray and Amhara regions respectively to collect
ground truth data. These teams had diverse backgrounds: Tigray’s team included staff from Mekelle University’s Department
of Dryland Crop and Horticultural Sciences and Department of Land Resources Management and Environmental Protection,
and staff from the College of Agriculture and Natural Resources in Mekelle, Tigray. The Amhara team was comprised of staff
from the Irrigation and Lowland Area Development Bureau in Bahir Dar, Amhara.

To gather data, the teams used handheld GPS devices, rental cars, pens, notebooks, and laptops for encoding. Guided by a map
featuring available SkySat images in the 2022 harvest season, the team selected sites near roads for accessibility. Local farmers
played a vital role in locating harvest pile sites. Importantly, no gathered data was discarded throughout the process. The data
collection spanned about a month.

Both regions encountered unique challenges. In Amhara, farmer hesitation stemmed from fears of losing land to non-agricultural
industries. There was also a prevailing distrust regarding the purpose of the collected data, given the significance of harvest piles
for livelihoods.

Tigray presented a unique set of challenges. Many of the chosen sites had been active battlefronts in recent years, carrying high
risks of unexploded bombs. Additionally, the team faced instances of dog attacks, particularly prevalent in the Central zone
where dogs had not received vaccinations for approximately two years due to the conflict. Since the troops had not yet left



Tigray territory, the team faced exposure to troops from Amhara and Eritrea. There were also snake attacks in areas like the
Menji-Guya line. The security situation was precarious and frightening during the field work.

Appendix Figure A5 illustrates the geographical distribution of the 2,296 data collection points acquired by our survey team.
These points span across the Tigray and Amhara regions.

L. Closeup of ESA comparison

In Figure A6 we show close up examples of the locations in squares shown in Figure 9a, overlaying the ESA map in pink.

To accurately determine the additional cropland area projected by our model, we employed a systematic process. Surrounding
each prediction point generated by our model, we established bounding boxes measuring 256x256 meters. Within these boxes,
we evaluated the extent of coverage by the ESA cropmask, specifically targeting positive bounding boxes. If a given box had an
ESA cropmask coverage of 20 percent or less, we classified it as newly predicted cropland by our model. For the shared cropland
area recognized by both our model and ESA, we summed the areas of positive squares exhibiting an 80 percent or higher overlap
with the ESA cropmask. Employing a similar methodology, we identified non-cropland areas mutually disregarded by both our
model and ESA, by tallying the area of negative squares with an ESA cropmask coverage of 20 percent or lower.

Partition assignment code
Listing A1: Contiguous shape group partitioning algorithm

1 # Create a graph with rectangles as nodes and overlaps as edges
2 import pandas as pd

3 import os

4 import networkx as nx

5 from shapely.geometry import box

6 from shapely.strtree import STRtree

7

8

9

df = pd.read_csv(os.path.join (FOLDER_PATH, "merged_labelled.csv"))
df = df.iloc[:, 1:]

11 G = nx.Graph()
13 # Create shapes and nodes
14 def create_rectangle (row) :

15 return box (row[’lat_2’], row([’lon_1’'], row[’lat_1’], row[’lon_2'])

17 geometry=1[]
18 for index, row in df.iterrows():

19 G.add_node (index)

20 geometry.append (create_rectangle (row))
21

22 tree = STRtree (geometry)

23

24 # Add edges for each overlapping box
25 for idx, shape in enumerate (geometry) :

26 for intersecting in tree.query (shape):

27 if not shape.touches (geometry[intersecting]) and idx != intersecting:
28 G.add_edge (idx, intersecting)

29

30 connected_components = list (nx.connected_components (G))

31 groups_of_rectangles = [list (component) for component in connected_components]

Labelling procedure

We conducted a labeling procedure with the primary objective of optimizing accuracy and leveraging expert knowledge, while
simultaneously expanding the scale of our labeled dataset. In Stage 1: knowledge distillation (Appendix Figure A4), we (coau-
thors) did a walkthrough of some examples guided by experts to familiarize ourselves with the appearance distribution of
positive and negative examples of harvest piles. In Stage 2: high bandwidth labeling we focused on transferring a foundational
proficiency to teach public labellers how to detect trivial examples of harvest activity. To achieve this, we instructed labellers
by presenting multiple illustrations depicting harvest-related activities highlighted in red circles, of the same composition as
shown in Appendix Figure A2. The illustrative samples were intentionally broad in classifying harvest piles; for instance, even
strictly negative cases such as plastic tarps concealing sesame and accumulations of harvest remnants repurposed as animal feed
were presented as affirmative instances of harvest piles. This inclusive approach was done to minimize false negative labels.

In Stage 2 we used public labellers to relabel 3792 negative examples that were previously labelled by coordinators but denoted
by experts to have many false negatives. To promote dataset quality while minimizing costs, each image was presented to two



labellers, who gave a binary label after reading the instructions. Details about the batch job are listed in Appendix Table A4. We
chose to increase the quality of our workers by setting minimum requirements for their historic task approval rate and count.
It is interesting to note that our entire batch job was completed within 4 hours and 45 minutes. The efficiency of MTurk’s crowd-
sourced labeling capacity open the prospects of automated quality control in significantly enhancing our labeling throughput.

Table A6: Labelling Job Details

Task details Job completion status
Reward per assignment $0.01 Assignments completed 7584
Number of assignments per task 2 2 Average time per assignment 8 min 24 sec
Time allotted per assignment 1 hour Creation time June 30, 2023 9:56 AM PDT
Task expires in 2 days Completion time June 30, 2023 2:40 PM PDT
Auto-approve and pay workers in 3 days
Worker Requirements Cost summary
Require workers to be masters No Total reward $75.84
HIT approval rate % Greater than 98 Fees to Mechanical Turk $75.84
Number of HITs Approved Greater than 50 Total cost $151.68

By the end of the crowdsourced labelling step, we had 3792 SkySat images, each labelled by two labellers. For 437 of the
images, the labellers both agreed the image did not contain piles. For 1708 of the images, the labellers agreed the image
contained piles. For the remaining 1647 images where the labellers did not agree, we (the coauthors and project coordinators)
manually labelled the images again, using our better knowledge of the appearance of harvest piles on SkySat images. After our
manual pass through, we had 1997 positively labelled images and 1795 negatively labelled images.

The 1997 positively labelled images were then sent to Stage 3: Expert QA. Here, our subject experts manually reviewed each
image that we decided were highly probable candidates for positive examples of harvest piles. After review, 341 of the 1997
images were labelled as positives, and the remaining were labelled as negatives. When we combined these updated labels with
our dataset, we ended up with our current labelled dataset of 2547 positives and 2985 negatives.
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Figure A1: Statistics of HarvestNet dataset distribution



Figure A2: Examples of harvest piles at various stages, circled in red
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Figure A3: Additional examples of harvest pile activity, randomly selected
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Figure A6: Close up view of ResNet-50 model predictions overlaid on top of ESA map



