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ABSTRACT
Recent advancements in machine learning enable cost effective
methods for understanding societal and economic activities in de-
veloping countries using publicly available satellite imagery. How-
ever, this progress remains stagnant in rural areas where the largest
population under poverty line resides. In this work, we explore deep
models’ performance in rural areas in Africa and investigate meth-
ods that improve the performance. We argue that the geographic
displacement noise present in ground surveys for anonymization
purposes causes misalignments between input imagery and labels
and therefore hampers accuracy, which exacerbates in rural areas.
We then propose to incorporate building footprints data and a novel
self-attention mechanism to provide more robust and accurate pre-
dictions of socioeconomic development. We test our framework
against three socioeconomic measures in 21 African countries. Our
best models outperform previous baselines in most of these tasks.

CCS CONCEPTS
• Computing methodologies→ Computer vision; • Applied
computing → Economics.
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1 INTRODUCTION
The standard ways of collecting socioeconomic data to track sus-
tainability measures depend on doing ground surveys or censuses.
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These methods require considerable technical expertise as well as
financial resources, hindering developing countries’ ability to track
key socio-economic indicators of sustainable development 1.

On the other hand, alternative sources of data such as satel-
lite images [9, 16], mobile phones and social media data [1], and
Wikipedia articles [12] are freely available in abundance. With the
recent advancements in machine learning, leveraging these pub-
licly available sources of data for developmental measures becomes
possible. These methods better generalize through time and space,
inform in the end the policy-making processes in low resource set-
tings and enable a more sustainable way to track social-economic
activities in developing countries.

Whilemost of previousworks [7, 9, 11, 12] evaluated theirmodels
on average performance (e.g., accuracy or mean-squared error), 60%
of the population in the developing countries resides in rural areas
where the poverty rate is significantly higher [15], which indicates
the importance of separate evaluation of the performance on rural
sub-populations. Some prior work [10, 16] tested their frameworks
on rural sub-populations, and an almost 40% decrease on Pearson’s
𝑟2 was reported compared to the performance on overall population
(see Figure 1). Therefore, in this work, we focus on evaluating and
improving the performance of satellite-based predictions on socio-
economic indicators over rural sub-populations.

To trace the root of the performance degradation, Koh et al. [10]
formulated it as a domain shift problem between the training and
testing set. However, in Figure 1 we show that even if we focus
both training and testing only on the rural sub-population, the
performance gap between urban and rural regions is still prominent,
which explains the insignificance of the performance improvement
provided by the training schemes in [10].

We hypothesize that the performance drop of deep models in
rural areas can be caused by the geographic displacement noise
used for anonymization purposes when collecting ground surveys,
which results in misaligned datasets: the geo-locations of the satel-
lite images correspond to the true geo-locations of the survey data
plus some random noise. Hence, the mapping between input im-
ages and output labels is incorrect. Because residents in rural areas
usually live further apart, survey makers often provide larger geo-
graphic displacement noise in rural areas than in urban areas [2].
In demographic and health surveys (DHS), urban areas shift is up
to 2 km, while the maximum jitter is 10 km for rural data (see ex-
ample in Figure 1). This larger noise presents greater challenge for
prediction in rural regions.
1https://www.premiumtimesng.com/news/headlines
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Figure 1: left-image: Geographic displacement noise in selected
locations in Kambia, Sierra leon. Circles represent the radius of
the noise; right-image: Test performance of previously used deep
models in urban-rural sub-population [16]. x-axis represents which
population/sub-population we train on, and y-axis represents test
performance(𝑟 2) among urban, rural and overall test sets, each spec-
ified by a different color.

Motivated by the correlations between building objects and dif-
ferent sustainability measures [11] as well as the recently publicly
released labelled building footprints across Africa [13], we propose
to use building footprints as a separate input signal that can pro-
vide additional (potentially, more accurate) information about the
socioeconomic and geographical characteristics of a population.
Figure 2 shows an example of building density differences. Com-
pared with a model that uses satellite imagery alone, we expect
that adding building footprints can increase both the overall per-
formance and the rural areas’ performance by decreasing the effect
of displacement noise.

We also propose a model architecture inspired by the recent
advancements in attention mechanism [4]. Our model first divides
the input image into patches and then extracts features from each
patch. An attention layer then takes in the visual features of all
patches and learns to better focus/attend on the informative portion
of the images. By incorporating attention mechanism, we expect
the model to identify the target settlements even in the presence of
large displacement noise.

We evaluate our models on various socioeconomic indicators
across 21 African countries. Our best models outperform previous
baselines especially in rural areas, with an improvement in Pear-
son correlation metric that varies from 3-15%, on wealth index,
sanitation index and women education attainment index.

2 METHOD
We propose to incorporate two novel approaches for more robust
predictions in rural areas: (1) Introducing building footprints as
a new source of data for the predictions; (2) using self-attention
mechanism over image patches while including a larger neigh-
bourhood from the image center as input.

2.1 Building footprints as a signal for predicting
sustainability measures

A "rural" area according to DHS surveys is defined based on mea-
surements of population density, the infrastructure of the area, and
occupation of inhabitants. Building footprints, which are polygon
indicators that represent the location and the shape of buildings on
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Figure 2: Rural vs Urban image pairs. (Top: Satellite, Middle: Build-
ing, Bottom: Nightlight)

Figure 3:Model architecture with attention layers. (Left: Full model
architecture, Right: Details about the attention layer)

satellite images, provide clearer information about human activi-
ties and population that relates to both socioeconomic metrics and
rural/urban indications than satellite images alone. Moreover, we
observe that since it is possible to shift the central location but still
stay in an empty area without detecting new buildings, including
building footprints in rural areas predictions can help the jitters
to be less prominent (example in Figure 2). Because the features
detected in the shifted images are unaffected, the negative effect of
the misalignment becomes less significant. Hence, incorporating
building footprints in these tasks improves the displacement noise
robustness, and in turn, can help the prediction for both the whole
population and the rural sub-population.

Recently, Sirko et al. [13] have released a publicly available
dataset of around 516-Million Africa-wide buildings bounding box
polygons. To adapt these footprints to our pipeline, we first map
the surveys locations to the polygon locations, and then we raster-
ize the building footprints into images with 30m spatial resolution
to align with the other satellite bands we use, where pixel values
represent building area ratio. The resulting images have one ad-
ditional building footprint channel. Figure 2 shows examples of
this newly added one-channel images of building, paired with their
corresponding RGB and nightlight bands, in rural/urban areas.

2.2 Attention-based Model
2.2.1 Encoding the image patches. As shown in Figure 3, we de-
velop an image patch feature extractor that encodes image patches
into embeddings before inputting them into the attention layers.
Given an image 𝑋 ∈ R𝐶×𝐻×𝑊 , where 𝐻 ,𝑊 , and 𝐶 indicate image
height, width, and number of channels, we first divide it into 𝑁

patcheswith size 𝑃×𝑃 where 𝑃 ≤ 𝐻,𝑊 . Here,𝑁 = ((𝐻 − 𝑃)/𝑆 + 1)×
((𝑊 − 𝑃)/𝑆 + 1) where 𝑆 indicates stride. Notice that patches can
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partially overlap with each other. Each image patch 𝑋𝑝 ∈ R𝐶×𝑃×𝑃

is then further encoded into a 𝐷 dimensional image patch embed-
ding (see Equation (1)), using a pretrained ResNet18. We use a 2D
position encoder to represent the position of each patch into a
𝐷 dimensional embedding and add to each patch embedding (i.e.,
element-wise summation). Next, these 𝑁 image patch embeddings
are further fed into self-attention layers to aggregate them into one
single image embedding.

2.2.2 Attention layers. We incorporate self-attention to better lo-
cate the important signals in the inputs. Following [4, 14], we use 𝐿
number of alternating self-attention (SA) (Equation 1, 2, and 3), as
well as feed forward layers (MLP) comprised of two linear layers
with GELU non-linearity, layer normalization (LN), and residual
connection before and after each layer (See Equation 4, 5, 6, 7). The
resulting 𝑁 feature maps are aggregated to a global average (see
Equation 8). This global feature map is then fed to the final fully
connected layer to predict the specific sustainability index.

[𝑞, 𝑘, 𝑣] = 𝑍𝑃𝑞𝑘𝑣, 𝑃𝑞𝑘𝑣 ∈ R𝐷×𝐷 , 𝑍 ∈ R𝑁×𝐷 . (1)

𝐴 = softmax
(
𝑞𝑘𝑇

√
𝐷

)
, 𝐴 ∈ R𝑁×𝑁 . (2)

SA (𝑍 ) = 𝐴𝑣. (3)

𝑍 0 =
[
𝐸

(
𝑥1𝑝

)
;𝐸

(
𝑥2𝑝

)
; · · · ;𝐸

(
𝑥𝑁𝑝

)]
+ 𝐸𝑝𝑜𝑠 , 𝐸 ∈ R𝐷 , 𝐸𝑝𝑜𝑠 ∈ R𝐷 .

(4)

𝑍 1
ℓ = SA

(
LN

(
𝑍 2
ℓ−1

))
+ 𝑍 2

ℓ−1; ℓ ∈ 1, · · · , 𝐿; 𝑍 1
ℓ ∈ R𝑁×𝐷 .

(5)

𝑍 2
ℓ = MLP

(
LN

(
𝑍 1
ℓ−1

))
+ 𝑍 1

ℓ−1; ℓ ∈ 1, · · · , 𝐿; 𝑍 2
ℓ ∈ R𝑁×𝐷 .

(6)

𝑦 = LN
(
𝑍 2
𝐿

)
. (7)

𝑦𝑎𝑔𝑔 =
1
𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 , 𝑦𝑎𝑔𝑔 ∈ R𝐷 . (8)

3 EXPERIMENTS
3.1 Datasets
3.1.1 Demographic and Health Surveys (DHS). We derive our la-
bels/ground truth data from the DHS surveys [3] curated by [16, 17].
DHS surveys are nationally-representative ground surveys with
different questionnaires that track demographic and socioeconomic
indicators. Often times, they also include geographic information
(latitude and longitude) about each surveyed cluster. These clusters
usually represent randomly selected households from each enumer-
ation area in census files, and are labeled either rural or urban. We
focus on questionnaires related to wealth, health and education
indices collected from surveys conducted between 2009 and 2016
in 21 African countries, summing all up to 18503 clusters.

3.1.2 Satellite imagery and building footprints . We use the publicly
available google earth engine tool to collect the satellite imagery and
the building data. This tool can be used to combines multiple satel-
lite images with other geo-spatial data [6]. By using Google Earth
Engine, we geographically align our 18503 DHS clusters/locations
with the corresponding satellite images and building footprints. We
have 3 types of input bands: Multi-spectral, Nightlight and Building
footprints.

Multispectral (MS) bands. MS bands are 7 bands collected follow-
ing the same procedure in [16], from a 3-year cloud-free median
composite of surface reflectance values in Landsat 5,8 and 7. All the
bands have 30 m per pixel resolution, representing RED, GREEN,
BLUE, NIR (Near Infrared), SWIR1 (Shortwave Infrared 1), SWIR2
(Shortwave Infrared 2), and TEMP1 (Thermal).

Nightlights (NL) band. Also following [16], NL bands are com-
posed of 3 years composite of night-time lights recorded from 2
sets of satellite DMSP and VIIRS [5, 8]. Each of them captures data
from different years range (2009-2011 and 2012-2016 respectively).

Building footprints (building). Using mean reduction, we reduce
pixel count in [13] to 30m per pixel, after filtering bounding boxes
with less confidence score (<0.7).

In the end, our satellite imagery can have 7 MS bands, 1 NL
band and 1 building band. Each input can be used separately or in
combination with other bands. We refer to each input combination
as (NL+MS), (NL+MS+building), (NL+building), and (building+MS).

3.2 Baselines and Evaluation metrics
In previous work, the best model we compare against for the wealth
index task is the ResNet18[16] with MS+NL input, while KNN with
center NL pixel input was the best for other tasks. For evaluation,
we use the squared Pearson correlation coefficient both for whole
and sub-populations(𝑟2), which is known to capture how variance
in the ground truth label is explained by model predictions.

3.3 Experiments on wealth, health and
education indices prediction

Experiments are carried out to investigate how different inputs
or whether using attention layers over larger image affects model
performance in rural settings. Results for wealth index, sanitation
index, and women education index are shown in Table 1, 2, and 3
respectively. Moreover, to investigate more how attention weights
are improving performance, we compare its performance against
taking the global average of the patches as shown in table 1

3.4 Summary on DHS indices prediction
Generally speaking, adding building data as model input is a key to
improving model performance in rural areas with 5-13% increase in
𝑟2, compared to using NL or MS bands. Correlating education and
sanitation indices with satellite images is more difficult compared
to wealth index and they are more prone to noise. We hypothesize
that this is due to the fact that they are calculated from a single
variable in DHS surveys, unlike wealth index which is aggregated
from multiple variables. Better performance may be achieved by
supplementing building data with other sources of input such as
street imagery [11] or Wikipedia articles [12], but we leave this as
future work.
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Table 1: Results on wealth index prediction task. “GA” in-
dicates global average pooling; "SA" denotes self-attention
layers.

Resnet18 baseline
input band 𝒓2 𝒓2 rural 𝒓2 urban
MS+NL 0.69 0.35 0.33

Ablation on input type - ResNet18
input band 𝒓2 𝒓2 rural 𝒓2 urban
MS 0.52 0.15 -0.05
NL 0.67 0.33 0.3
Building 0.67 0.33 0.3
MS+NL ([16]) 0.69 0.35 0.33
MS+Building 0.69 0.35 0.33
NL+Building 0.71 0.4 0.47
MS+NL+Building 0.72 0.41 0.48

Ablation on model- NL+building input
model 𝒓2 𝒓2 rural 𝒓2 urban
ResNet+SA 0.72 0.43 0.46
ResNet+GA 0.68 0.39 0.43

Table 2: Results on the sanitation index prediction task.
KNN Baseline

input band 𝒓2 𝒓2 rural 𝒓2 urban
NL center pixel 0.39 0.069 0.22

ablation on input type-ResNet18
input band 𝒓2 𝒓2 urban 𝒓2 urban
NL 0.24 0.01 0.11
Building 0.41 0.13 0.17
NL+building 0.39 0.104 0.16
NL+building+MS 0.29 0.03 0.17

Model-NL+building
model 𝒓2 𝒓2 rural 𝒓2 urban
resnet+SA 0.43 0.134 0.22

Table 3: Results on the women education attainment index
prediction task.

KNN Baseline
input band 𝒓2 𝒓2 rural 𝒓2urban
NL center pixel 0.14 0.002 0.015

Ablation on input type-resnet18 model
input band 𝒓2 𝒓2 rural 𝒓2 urban
NL 0.15 0.01 0.019
Building 0.24 0.06 0.1
NL+building 0.25 0.07 0.1
NL+building+MS 0.25 0.1 0.15

Model-NL+building input
model 𝒓2 𝒓2 rural 𝒓2 urban
resnet+SA 0.23 0.07 0.08

Adding the image patch self-attention layer provides 4% 𝑟2 im-
provement on the sanitation index prediction task and 3% in the
wealth index task, but only marginal advantages on women educa-
tion index prediction task. We expect further improvement when
using higher resolution imagery in future work, as self-attention
benefits from higher quality inputs when extracting more fine-
grained information.

(a) Overall perform. (b) Rural areas perform.

Figure 4: The model performance against different levels of
geographic displacement noises with building input (a,b). "+"
and "-" indicates geographic displacement to the left or right.

3.5 Experiments on robustness to different
levels of Noise

The goal of this section is to investigate how robust models with
different bands are to different levels of geographic displacement
noise. We perform detailed comparison in Figure 4.

We simulate the noise by shifting the image’s center within its
neighbourhood of 2 km, by a distance of either 1 or 2 Km, to the
left (+) or right (-) direction. We use wealth index labels for these
experiments and compare robustness before and after adding the
building footprint data.

We can see that noise intensely affects the MS bands by caus-
ing an almost 10% decrease for different noise levels. As expected,
this effect can be compensated for by combining the additional
information from the building footprint band.

4 CONCLUSION
We propose two novel ways to mitigate the negative effect of the ge-
ographic displacement noise from ground surveys on deep remote
sensing based model in rural Africa: (1) We use building footprints
as an additional signal to provide more robust input to the deep
models and (2) we incorporate self-attention mechanism to better
extract visual features. We assess our performance on three dif-
ferent tasks in 21 African countries. On most of these tasks, we
achieve significant improvements. We hope that our work can at-
tract more attention toward the overlooked rural areas progress to-
ward sustainable development goals, and encourage more research
on debiasing the deep models performance on underrepresented
areas, which in a way can lead to a fairer distribution of the limited
resources in the developing world.
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